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ABSTRACT 

A method is presented for calculating the pressure and composition 

of the vapor phase in the carbon-silicon binary system. The following 

quantities are necessary: partition functions of the various molecular 

species present in the vapor, vapor pressures of graphite and liquid 

silicon, and the standard free-energy increment for the change 

C(graphite) + Si(liquid) = SiC(solid) 

A study is made of the equilibrium: vapor and solution of carbon in 

liquid silicon. 
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THE GASEOUS EQUILIBRIA IN THE CARBON-SI LICON BINARY SYSTEM 

1 . INTRODUCTION 

This report is prepared with a primary purpose: To arouse the interest 

of colleagues working in molecular and mass spectroscopy, thermochemistry, 

and general physical chemistry in the carbon-silicon binary system. With the 

new semiconductor silicon carbide rapidly emerging, the practical importance 

of the carbon-silicon system has greatly increased. In order to perform nu­

merical calculations, we still need un~uestionable values for the vapor pres­

sure of li~uid silicon and the heat of formation of s i licon carbide, together 

with, possibly, a large set of molecular constants for the species present in 

the binary vapor phase. It is hoped that with more workers interested in the 

problem, these data will gradually become available . 

Since the calculations involve sums of terms with two running i~dices, 

some of the derivations (especially towards the end of the work) contain 

large, though not complicated, e~uations. With one exception, nevertheless, the 

final results are brief forms. It may appear that some elementary steps and 

repetitions in the derivations could have been omitted. However, in view of 

the preliminary nature of the report, one should not be too concerned about 

this, inasmuch as it is our purpose to familiarize the reader with the mathe­

matical device used. 

2. TENTATIVE SKETCH OF THE PHASE DIAGRAM 

At the outset it is clear that pressure must be considered along with 

composition and temperature. Thus the complete phase diagram should be visu­

alized as a prismatic body with composition, temperature, and pressure co­

ordinate axes as its edges. We have studied an isothermal composition-pressure 

section of this body. Figure 1 shows the initial sketch of such a section, sup­

posedlyas projected. The sketch is based on the following considerations: 
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(1) The positions of points a and h are given by the vapor pressures 

of pure carbon and silicon, respectively. 

(2) At very low pressure, i.e., corresponding to the top region of 

Fi g , 1, there will be obly binary vapor phase. 

(3) As the pressure is increased, the first condensed phase which ap­

pears is graphite. Then the other two condensed phases, silicon carbide and 

l i quid silicon appear. 

( 4) 1 According to the studies of Ruff and Konschak, there exist no other 

silicon carbides than SiC. 

(5) It is assumed that silicon does not substitute for carbon in graphite. 

Silicon carbide is considered to be · stoichiometric Only.2 At temperatures around 

the melting point of silicon, the solubility of carbon in liquid silicon is negli­

gible. Thus we can draw three vertical lines: ab and extension; ce and ex­

tension; also hg and extension for the three condensed phases: graphite, silicon 

carbide, and liquid silicon. At higher temperatures, the solubility of carbon 

in liquid silicon becomes appreciable. The extension of the problem is treated 

in the final part of this work. 

(6) In application for present purposes, Gibbs ' phase rule is formulated 

as follows: the maximal number of coexistent phases equals the number of c9m~ 

ponents plus two. There are two components: silicon and carbon , Hence the 

maximal number of phases is four , This corresponds to a quadruple point - a 

singular pair of temperature and pressure. On the line bcd, three coexistent 

phases have been indicated: graphite b, silicon carbide c, and vapor d. This 

combination of phases being short of the maximal number of phases by one phase, 

therefore, has one degree of freedom. Analytically, pressure at the bcd level 

is a function of temperature. Above the line bcd, we have a combination of on­

ly two phases: graphite ab and vapor ad. Here there are two degrees of freedom. 

Analytically, at a given temperature this combination of phases can exist at a 

range of pressures from a to b . Analogously, the line efg has been established. 

1. O. Ruff and M. Konschak, Z. Elektrochem. 32, 5~5 (1926). 
2. J. A. Lely, Ber . deut. keram. Ges., 32, 229 (1955) . 
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An extensive use of t he t hermodynamical concept of van't Hoff's equi~ 

librium box3,4 has been made her e (Fi g . 2) . It is an i deal vessel supplied 

with a set of hypothet ical membranes, each of which is permeable to only one 

of the molecular species present in the binary vapor in the box . PC' PSi' 

PSi ' ... are the partial pressures of the respective molecular specl es, and 

P 2b is the total pressure of the mixture. By reversible oper ation of the 
eq ox 

pistons, certain species can be withdrawn or introduced into the box. From 

these mental experiments, the free-energy increments for changes involving mo­

lecular species within the box can be calculated. 

In Fig. 1, the areas I, III, and V, and the lines II and IV can be thought 

to correspond to van't Hoff' s equilibrium boxes . As already menti oned, pres­

sure of the boxes I, III, and V is variable within a certain range . In the 

boxes II and IV, it is constant . After some preliminary arrangements that will 

be made in the next chapter, we will again return to the equilibrium boxes, de­

riving from them information regarding curves ad, df, and fh. 

3. PRELIMINARIES 

Let us denote a general molecule present in the binary vapor phase by 

C.Si .. Further, consider a volume V cm3 of vapor phase, and let the number 
l J 

of C.Si . molecules present in this 
l J 

volume be N .. ' At this point it should 
lJ 

be mentioned that the quantity V will cancel out in the derivation, and there-

fore we do not have to be concerned about its magnitude. Our treatment is 

confined only to the low-density vapor cases when the forces of cohesion be ­

tween the molecules can be neglected. Then, according to statistical 

3. J. H. van't Hoff, Z. physik. Chem. , 1, 481 (1887). 
4. S. Glasstone, Textbook of Physical Chemistry (New York: D. Van Nostrand 

Co.", 1948), cf. p. 818. 
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mechanics 5,6,7 , 

where 

N .. 
lJ 

i j 
Q]:,O Q(),l 

' .. (1) 

Qij' ~,O' and ~,l are the partition functions of the CiSi j molecule, 

monatomic carbon, and monatomic silicon, respectivelyj 

w .. is the work of formation, in ergs, of the molecule C.Si .. 
lJ 1 J 

It is the work which the world's work bank gains when i atoms of carbon, sepa­

rated at infinitely large distances, at rest and at ground state of exci tati'on, 

come together with j atoms of silicon, initially at the same c?nditions, and 

form a C.Si . molecule, also at rest and at ground state. This work is usually 
1 J 

called the dissociation energy D
O

O .. , and is given in electron volts . The re­° lJ lationship between wij and DO ij is : 

w . . 
lJ 

60 86 -12 ° 1. 1 '10 DO' ., lJ 

Boltzmann 's constant 1.38026'10-16 , 

T t t l'n OK . empera ure 

5. G. S. Rushbrooke, Introduction to Statistical Mechanics (Oxford: Clarendon 
Press, 1949), cf. p . Ib2, Eg. (37'). 

6. R. Fowler and E. A. Guggenheim, Statistical Thermodynamics (Cambridge: Uni­
versity Press, 1949), cf . p. 165, Egs . (506,7), (507,1). 

7. R. H. Fowler, Statistical Mechanics (Cambridge : University Press, 1955), 
cf. p. 164, Eg . (479). 



and 

E~uation (1) can be rewritten: 

N •. 
l.J 

We shall denote 

Then (2) becomes 

N .. 
l.J 

w .. 
l.J 
li 

Qij e 

7 

Also, either from the definitive e~uations (3) and (4), or from (5), 
considering that both wl,O and wO,l are zero, we obtain: 

and 

( 2) 

( 4) 

( 6) 

The partition function ~j can be rigorously decomposed into ' two factors: 

the translational partition function Q .. and the internal partition 
~rans l.J 

function Q. t .. ' l.n l.J 

Qtrans ij Qint ij (8) 
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where 

The translational partition function is 

~rans ij 

M .. ~ the molecular we i ght of the C.Si. -. = lJ 1 J 

h Planck's constant 6 . 6238.10- 27 

N
Av Avogadro's number == 6 .0254.1023 

The internal partition function Q. t .. has to be calculated from the 
ln lJ 

energy levels of the C.Si. molecule, due to internuclear vibration, rotation, 
1 J 

and electronic excitation of the molecule. 

When Q .. in (8) is replaced by the right-hand side of (9), and the ""trans lJ 
new expression for Qij thus~"ubta1Lliled.J.d.s. substituted into (5), we get 

The product of the 

a characteristic of the 

1 
- k .. - M .. 2 lJ lJ 

1 
M . . 2 
lJ 

w • . 
lJ 

fi 
Qint ij e 

last three factors on the right-hand 

C.Si. molecule alone . Let us denote 
1 J 

W •• 
lJ 

U 
Qint e ij 

(10) 

side of (10) 
it by k . . : 

lJ 

(11) 

is 

Then, upon calculating the numerical value of the aggregate of universal con­

stants, (10) becomes 

N .. 
lJ 

1 
T2VC}f-...

j
k .. 
lJ (12) 
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Each C·Si. molecule ' contairts 'i atbms of carbon. Therefore, the total 
l J 

number of carbon atoms, f ree and co~ined, i n the volume V, is 

L 
ij i N .. 

lJ 

and the total number of silicon atoms is 

.. ~' 

L 
ij 

j N .. 
lJ 

The ratio of carbon to silicon atoms in the vapor then is 

L i N .. L :i,. c1 I-. j k .. 
x ij lJ · 

= 
ij lJ 

b. j N .. L j c1 I-. j k .. 
lJ lJ ij lJ 

(14) 

To indicate composition in Fig .l, we used the atomic fraction of carbon X, 

which is the conventional usage. However, for our present purposes, x as de­

fined by (15), and which also corresponds to x in SiC ,will be a more convenient 
x 

variable. For pure carbon, x =00 , and the line ab in Fig. 1 is removed to 

infinity. However, it will be shoWn that the curve ad when plotted as 
1 loglO p versus x reaahes infinity at zero s~ope, which is a simpli fying feature. 

Also, the new variable x is convenient in the treatment of the solution of carbon 

in liquid silicon. 

The total number of ,all kinds :of particles in the volume V is 

20 3 \' 
1.8789 • 10 T "2 V ?-. 

lJ 
(~6) 

At any instant, the pressure, volume, and temperature of the vapor will 

be connected by the gas law: 

t: N .. 
PV lJ lJ. RT 

NAv ' 
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where R = 82 . 079, when P is measured in atmospheres. 

In (17), when LN .. is substituted by the right-hand side of (16) ,- V on 
~J 1J 

both sides of the equation cancels out, and upon multiplying and dividing of 

the constants, we get 

P 
5 

2.5595.10- 2 T "2 I 
ij 

(fli '" j k.. . 
1J 

(18) 

5 
The product 2.5595.10- 2 T "2 , which is a temperature-dependent constant, we 

shall denote by a. 

Then 

P a ci J '" k .. 1J 

and the partial pressure of the species C.Si. is 
1 J 

P .. 
~J 

i aa 

In the case of pure carbon vapor 

P 
carbon 

",j k.' . 
lJ 

9 
(1$) becomes 

( 20) 

,( 21) 

the subscript 1]0" indicating absence of silicon; and for pure silicon vapor 

P ' 1 ' = a z: Sl :Lcon J ( 22) 

the subscript "0" indicating absence of carbon. 

The quanti ties a and 
o '" formally are temperature-dependent constants; o 

we shall need them later. They can be calculated from the experimentally 

measured vapor pressures of carbon and silicon by means of (21) and (22), re­

spectively, provided that a sufficient number of kiD and kOj values is availa­

ble. 
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4. THE CONDITIONS DERIVED FROM THE FIVE EQUILIBRIUM BOXES 

The First Equilibrium Box. Curve ad. - In the first equilibrium box, the 

condensed phase is graphite, and the pressure of this box can be any fixed value 

in the range abo By means of this box, we can find the Gibbs' free-energy incre­

ment DGI~ for the change 

C(graphite, 1 atm,T) + Si(monatomic gas, 1 atm,T) +DGI~ = SiC(gas consisting 

of SiC molecules onl~, 1 atm,T) (23) 

as 

P 
DG -& = RT ln 0,1 eq b I 

I 
Pl,l eq b I 

In order to calculate ~GI~ in calories, R = 1.9d773 must be used. 

( 24) 

According to thermodynamics, the value ~GI~ is independent of the pressure, 

which has been chosen in the range ab, of the box. Therefore, if in (24) 

PO,l eq b I and Pl,l eq b I are substituted by a~eq b I kO,l and aaeq b I' 

~ eq b I kl l' respectively, we get , 6G~ 
I 

kO 1 RT 
a _ --'- e . eq b I - kl 1 

, 
, 

which is a constant for given temperature. The condition (25) subsists along 

the whole extent of the curve adj consequently, also at the terminal point a. 

Therefore 

a I . = const = a , eq b 0 

which expresses in our way the fact that the pressure of carbon vapor in this 

box, on account of graphite being present as a condensed phase, is constant. 

( 25) 

( 26) 

By means of (26), (19), and (15), the curve ad can be calculated. We need 

only find the ~ value for the terminal point dj this will be possible from the 

second equilibrium box. 
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that 

Beforeleavi:ng _ the first equilibrium box , we shall furnish the proof 

lim 

1 
d loglO P 

x~c>o dx 

1 
d loglO P 

dx 
O' , 

i.e., that the curve ad, when the abscissa is x, instead of X, reaches the 

point a (now at infinity) at zero slope. 

We shall proceed as follows: 

1 
d loglO P 

dx 

1 
d loglO P 

dA 

From (19) 

dP 
d).. 

a a 
0 

a .= a 
o 

1 
d loglO P 

dA 

dx 
d).. 

a L 
ij 

a a 
0 

j a i t..
j

-
l k .. 

o lJ 

At t.. 0 in (30), all terms which contain t.. vanish, and we get 

dP 
d1\ 

(28) 
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Then (29) becomes 

1 
d loglO P 

(]A a:a 
o 

r..=0 

From (15) 

\" i j-l \" i .... jk \".2 i j-l 'iai .... j 
( L ij a o r.. k .. ) ( L jar.. . . ) (L Jar.. k. ·.) (L r.. k .. ) 

dx __ ~i~j _____________ l_J __ ~i~j~ ____ O _____ l_J ___ -__ ~i~j _____ O ________ l_J __ l~'J~. ____ O _______ lJ 
(]A = 

a:a (L j a i r.. j k. . ) 2 
- 0 0 lJ ij 

whiCh at r.. 0 becomes 

dx 
(]A 

o 

L i i a k.
O i 0 l 

Therefore from (28), (29), (3l), and (34), indeed, 

1 
d loglO P 

dx 
o . 

- CO" 

We can arrive at the same result by a simpler method: As r.. ~ 0 in the P and x 

functions, all terms which contain r.. with exponents > 1 vanish as small of higher 

order . Thus (19) becomes 

(34) 
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P 

and (15) by a still more drastic simplification becomes 

i i a
i 

k iO 
x 

which at a = a gives 
o 

dP 
dA 

a 

a=a 
0 

and 

dx 
cD.. 

a=a 
0 

Therefore, 

i 

L 
i 

L 
i 

L 
i 

i 
kil a 

0 

a i i k iO 0 

a i 
kil 0 

a( L . 2 
a~ kil ) 

dP i 
dx = i L i a k. o i o 1 

a=a 
0 

1 

f...2 

(.:.2 ( 40) 

which at f... = 0 becomes zero . This result when substituted in (29), in which 

f... previously has been formally replaced by x, gives (35). 

The Second Equilibrium Box. Point d. - The condensed phases in this box 

are graphite and silicon carbide. The pressure is a single value, Pd. By means 

of this box, we can find the free-energy increment ~GII~ for the change 

C(graphite) + Si'monatomiegas) + ~GII-tr = SiC(soliq..). . (41) 

We have omitted the "1 atm, T" in the parentheses at the chemical symbols, 

since it is understood that in the future the superscript -tr at the free-energy 

increment (the standard free-energy increment) will be a sufficient indication 

of this. 



It can be shown that 

-e-
On the other hand, ~GII can ~so be found from the two changes: 

first, 

C(graphite) + Si(li~uid) + ~GII~ 
and second, 

SiC(solid) ; 

Si(li~uid) + ~GII-&2 = Si(monatomic gas). 

15 

( ~e) 

( 43) 

( 44) 

~ 
~GII 1 is the standard free-energy increment for a change with all phases 

in condensed state . This increment can be calculated by conventional methods 

from the heat of formation of silicon carbide, the heat of fusion of silicon, 

and the heat capacities of graphite, silicon (solid and li~uid), and silicon 

carbide. Since this ~uantity is important throughout the whole wor k, we shall 

change the notation 

_ -e-
= ~G d con 

The standard free-energy increment for the second change (44), can be 

shown as 
~ 

~G = - RT In P II 2 0,1 li~ silicon' 

where PO,l li~ silicon is the par tial pressure of monatomic silicon above 

pure li~uid silicon at the temperature under consideration . 

E~ o (44) can be transposed to 

.J::_, .Si( l ilguid) = Si(monatomic gas) - ~GII~2 . 

( 46) 

When (47) is substituted for Si(li~uid) in (43), we shall get (41), and 
-& 

conse~uently 1J. GIl must be 

1J.G -& - ~G -& 
cond II 2 

( 48) 
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or, 

or, 

When in (48), .6 G
II

-& is substituted by (42) and 6 G
II

-&2 by (46) , we get 

RT ln PO,l eq b II 

PO,l eq b II 

PO,l liq silicon 

f.. eq b II 

.6 G -e-- RT 1 P cond + n 0,1 liq silicon 

6G~ 
cond 

RT 
e 

.6G-& 
cond 

f.. o 
e 

RT 

Therefore, the coordinates of the point dare 

.6G-& 
cond 

f..d f.. 
RT e 

0 

and 

ad a 
0 

The ' Third Equilibrium Box. Curve df. - By analogous reasoning, we can 

find that the equation of the curve df is 
.6G-& 

cond 

and 

a f.. o 0 
e 

RT 

The Fourth Equilibrium Box. Point f. - Here 

.6G-& 
cond 

a
f

, a RT e 
0 

f..f A-
0 

the product a
f 

f..f satisfying the condition (54). 
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The Fifth Equilibrium Box. Curve fh . - The equation for the curve fh is 

Let us calculate 

1 
d 10glO P 

dx " = A o 
a = 0 

" = " o 

i.e., the slope of curve fh at point h. Again, for the sake of exercise, we 

shall use both the general and the simplified methods . 

The general method: As in (28) and (29) , 

From (19) 

and 

From (15) 

dx 
da 

" = " o 

1 
d 10glO P 

dx 

dP 

I" da = "0 

dP 

da "=,, o 
a = 0 

A ='-A 0 

a [ . \. ... ~i 
lJ 

a 

1 dP 
o.4343:'p da 

" = "0 

dx 

I da " = "0 

ci-l j 
A k .. 0 lJ 

( L .2ai - l " k ) (L ·cl jk ) (L .. i-l jk )(L l·ai"jk .. ) 
~ ij l ~o ij ij J "0 ij - ij lJa "0 ij ij ~o lJ 

( 60) 

(61) 

( 62) 
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and 

d.x 

dex '" = '" o 
ex = 0 

Then, from (59) 

1 
d 10glO P 

d.x 

~"'~ k1j ) (~ j "'~ kO)-( ~j "'~! klj)· ) O 

Z .' ",j k . )2 
J J 0 OJ 

" = " o 
ex = 0 

1 \ j 
- 0.434. 3 - a L '" k 
, v . ' __ "" :P~i~ silicon j 0 Ij 

I j 
j "0 kl-L 

~ j "j k . 
J 0 OJ 

a~j"jk . 
0.4343 J 0 OJ 

P li~ silicon 

= - 0.4343 

which is a negative ~uantity and, in general, <:- 0.4343 . 

( 64) 
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The simplified method; As ex -)0 0 in the P and x functions) all terms which 

contain ex with exponents> 1 vanish as small of higher order. Thus (19) be-

comes 

P 

and (15)) by a still more drastic approximation becomes 

ex r 
x J 

I 
j 

Therefore) 

and 

Then 

~If.. f.. 
0 

c; .I 

dP 
dx f.. = f.. o 

ex = 0 

j 
f..o k lj 

j ~j k 
o OJ 

dP 
dex f.. f.. 

0 

ex 0 

dx 
=-

dex f.. = f.. 
o 

ex = 0 

= 

a \" J' '\oj k 
L "'0 OJ 
j 

r j 
a f..o k~]j ) J 

I j 
f.. kl' j o J 

I j f.. k , 
j o OJ 

When the right-hand side of (69) is substituted for dP/dx in (29)) 
in which previously f.. has been formally replaced by x) ex = ex replaced by 

o 
ex = 0) and lip by I/Pl , 'I' ) we again obtain (64). 1<1 Sl lcon 

( 66) 

( 68) 

What relationships can be extracted from the present mathematical device 

when the solubility of carbon in li<1uid silicon cannot be neglected? 
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Let us consider the change in which x is a positive fractional number, • 
e . g . , 0.2 : 

(l-x) C(monatomic gas) + SiC (liquid) + ~GV~l = SiC(gas consisting of 
x SiC molecules only~ (70) 

Again, the superscript ~ at the Gibbs' free-energy increment stands for 

a change when all reactants and products are at 1 atm and at the same tempera­

ture T; we therefore, as previously agreed, do not indicate these conditions 

in the parentheses at the symbol of the substance concerned. The formula 

SiC is used only as a shorthand symbol to denote a solution of carbon in sili­x 
con, in which on every atom of silicon there are x (a fraction) atoms of carbon. 

It implies no structural notions . 

It can be shown that 

P l-x 
RT ln pl,O 

1,1 

where Pl 0 and P
l 

1 are the partial pressures of the species C and SiC above , , 
the solution SiC . 

x 

Let us consider another change: 

x C(monatomic gas) + Si(liquid) + ~GV-9-2 

It can be shown that 

SiC (liquid). 
x 

= RT r~ln Pl 0 dx (73) 
Jo ' 

By adding (70) and (72), we find that the standard free-energy increment 

for the change 

C(monatomic gas) + Si(liquid) + ~GV~3 SiC(gas consistih~ of SiC mole-
cules onlY) · (74) 

must be 
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Upon substituting in (75) for ~GV~l the right-hand side of (71), and 

for ~GV~2 the right-hand side of (73), we obtain 

l-x 
Pl 0 

RT In ~''--
Pl 1 

+ RT r xln P 1 0 dx . 
J 0 ' , 

Now, as can be seen from (74), the ~GV~3 is independent of x. When 

Pl 0 is replaced by aa kl 0 and Pl 1 by aa ~ kl l' (76) can be simplified: 
, '" 

In ~ 

The limit for ('77) as x ~ 0 is: 

lim 
x-+O 

(x InLXX) + In ~ 
o = 

Therefore (77) can be rewritten as 

x In a - 10 ~n a dx . + In ~ = 

or, 

or, 

J
x 

- 0 dln ~ . 

lim (x In a) + In A 
a 

x~o 

= -In ~ + In ~ 
a 

(80) 

(81) 
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When the integral signs of (81 ) are dropped, we obta in 

d ln f... 

d l n a 
x 

s oln ' 
(82) 

which can be recognized as the Gi bbs-Duhem e~uation. 8 We have attached t he sub­

script "soln" at x in or der to emphasize that x is the atomi c rat i o of carbon 

to silicon in the solution, whereas a and f... are the effective concentrations 

of monatomic carbon and silicon in the gas phase e~uilibrating with the so­

l ution. 

We shall rewrite (82) as 

f... 
a xsoln . 

By means of (83), we can approach the problem of t he slope d 10glO(1/P)/dx. 

and 

By differentiation, 

1 
d 10glO P 

dx 
1 - 0. 4343 P dP 

dx 

As the case is general, . all we can write 

dP 
= 

(OP) (c>P) df... (Ja f... + df... q da 

dx (%)f... + @~)a· ~ 

From (19) 

CO~} [. i i-l f...j a a .. 
lJ 

for 

k .. 
lJ 

(~Da = a I j a i f... j - l k . . 
ij lJ 

(84) 

dP/dx is 

(86) 

8. G. N. Lewis and M. Randall, Thermodynamics and the Free Energy of Chemical 
Substances (New York: McGr aw-Hill Book Co., 1923), cf. pp . 207- 210 . 
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When dA/da in the numerator of (85) is substituted by the right-hand side 

of (83)) we obtain 

a (f; i a
i ",j k .. I . i j k ~ - - x soin J a '" .. . 

a lJ ij lJ 

When in (88) we carry I. j a i ",j k .. before the parentheses) we get 
lJ lJ 

a ( ) - x - !K en vap soln I 
ij 

jai",jk . . 
lJ 

For the first term in the denominator of (85)) we get from (15) 

I . ~ j k ('\.. i-l j ) I . a i j k .. J '" .. - 1-. lJ a '" k.. . . l '" .. lJ lJ lJ lJ lJ lJ 

(L:. i j J~ 
•• {J a '" k .. lJ lJ 

which, when divided in the numerator and denominator, by I 
ij 

simplifies to 

(~~A~ 
I i 2 a i - l ",j k .. - x L ij ai-l",j k .. ij lJ vap ij lJ 

L . a i ",j k 
ij J ij 

J
. ai "\ j k 

I\, ij ' 

For the (ox~",) in the second term of the denominator of (85)) we get 
a 

(I · . i '" j -1 k ) I . a i '" jk _ (L: .2 a i ", j -lk ) 
(o~\ ij lJ a ij ij J ij ij J ij 

\i>:r..) = ( 
,a L j a i ",j k . . ) 2 

ij lJ 

(88) 

, (90) 

(91) 
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which when divided in the numerator and denominator by .I 
ij 

gives 

r ij ci 'A. j - 1 k .. - x I j 2 ai 'A. j -1 k . . ij lJ yap ij lJ 

r j a i 
'A.

j 
k .. ij lJ 

j a i 'A. j k .. 
lJ 

When in the denominator of (85) the factor d¥~is substituted by the 

r ight-hand side of (83), we get 

From (91), 

~ i 2 a i 
'A. J k .. - x L ij a i 

'A.
j 

k .. 
a ~~)'A. = 

ij lJ yap ij lJ 

t a
i 

'A.
j j k . . ij lJ 

and from (93 ) 

I ij a i 
'A.

j 
k .. - x [ j2 ai 'A.

j 
k .. 

'A. ~~)a = 
ij lJ yap ij lJ 

L a i 'A. j j k .. ij lJ 

Then (94) becomes 

1 lrJ' i2 ai'A.
j 

k l· J
· - x l[J' ij ai'A.

j 
k .. - x 1 ~ ij ai'A.jk .. + x 1 x ~j 2ai'A.jk . . 

vap lJ so n lJ lJ so n yap lJ lJ 
a L ·ai .,jk 

ij J I\, ij 

The numerator of (97) can be factored to 

Lai'A.j k ( .. )( .. ) 
ij ij l-J xvap l-J xso1n 

(93) 

(94) 

(98 ) 
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Thus we finally obtain for (94) 

L exi A, j k.. ( i - j x ) ( i - j ) ij J.J yap xsoln 

From (89) and (99) we get 

a x
soln

) L j exi j - , (x - A, k .. 
dP ex yap ij J.J 

dx L i A,j k . . ex 
ij J.J 

ex L 
ij 

which simplifies to 

dP 
dx 

a (x - x ) yap soln 

(i-j x ) (i-j yap x
soln

) 

j exi A,j k .. 
J.J 

(\ . exi A,j k )2 
L J iJ' ij 

'\ exi A,j k .. (i-j x ) (i .. j x ) 
L J.J yap soln 
ij 
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, (100 ) 

(101) 

When in (84) the factor dP/dx is substituted by the right-hand side of 

(101), and P is substituted by the right-hand side of (19), we finally obtain: 

1 
d loglO P 

dx 
- 0.4343 ( x - x l) 

yap son (,- _ i j [ 
L ex A, . k tj ) L 
i j ij 

exiA, Jki}i- j xyap) (i-j ' ~oln)J 
(102) 
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When x = x the sl ope b ecomes zero, in agreement with the Gibbs -
vap s oln 

Konovalov theorem. 9 

It remains only t o be proved that at x
soln 

0 and a = 0 , (102) becomes 

(64) . 

The proof follows: 

right-hand side of (15). 

1 L d 10glO P ij 
dx - 0 .4343 

L 
ij 

In (102) we remove x 1 and replace x by t he so n vap 
Accordingly, 

j ai j L i ai )l.j k . . )I. k .. 
lJ ij lJ 

ai j i 2 ai)l.j ai Xj '.k . . )I. k .. L k .. -x L ij 
lJ ij lJ vap ij lJ 

At a = 0 the first fractional factor in (103) becomes 

L j j 
)I. kO ' 

j o J 

L )l.j 
kOj 0 

j 

and the second fractional factor becomes an indeterminate form. Let us re­

solve it. By differentiating both the numerator and the denominator with 

respect to a , we get 

L 
i j 

i- I j 
i j a f... 1\: . • -

lJ 

L 
ij 

'\ .. i, j l " L lJa I\, C. - .A. lJ vap ij ij 

\' .2. i-I, jk 
L 1 Ja J)o. •• 

lJ 

9. I. Prigogine and R. Defay, Chemical Thermodynamics (New York: Longmans, 
Green and Co., 1954), cf. p. 282. 

(103) 

(104) 

(105) 
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When a = ~ the numerator and the first term in the denominator of (105) 

become L ~j 
o 0 
J 

The second term in the denominator becomes zero because, 

from (91), the first factor in this term is ( L ~~ k1j )/( L j ~j kO .J, and the 
j j 0 J 

second factor is zero. The third term in the denominator is also zero because 

I 
j 

the first factor in this term is zero~and the second factor is j ~ k o ' 
o lJ 

Therefore, since (105) is unity, (103) reduces to (64). j 



APPENDIX 1 

THE PRESENT STATUS OF THE VAPOR PRESSURE OF LIQUID SILICON 

In Fig. 3, data are assembled on the vapor pressure of liquid silicon as 
. b Ruff d hak 1 10. 11 d H . 12 I glven y an Konsc , Baur and Brunner, Grleger, an onlg. n 

their experiments, Ruff and Konschak, and also Grieger, used a silicon carbide 

crucible as a container for the liquid silicon. Therefore, their measurements 

actually represent the pressure for the level efg in Fig.l . Calculating the 

separation hg for 17000 K, the temperature at which it is safe to assume no solu­

bility of carbon in liquid silicon, one finds a very small value. This is due 

to the vapor pressure of graphite being much lower than the vapor pressure of 

liquid silicon. Hence the silicon carbide container is permissible. At tempera­

tures above 17000 K, this discrepancy may increase considerably. Baur and Brunner 

have used an aluminum oxide crucible, which may have distorted their results. 

Honig developed his function from mass spectroscopic measurements and from 

comparison with germanium. In the range of low 104/T, we have extrapolated some-
4 what beyond Honig's original limit (10 /T = 3.6). Since his function is lightly 

curved, this may have affected the slope of our plot. It is believed that the 

error thus introduced is small. 

10 . E. Baur and R. Brunner, Helv. Chim. Acta 17, 958 (1934). 
11. O. Ruff, Trans. Electrochem. Soc. 68, 87 11935), cf. curve 3 in Fig. 6. 
12. R. E. Honig, RCA Rev. 18, 195 (1957). 

29 
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APPENDIX 2 

Equation (107) has been calculated by Humphrey and his co-workers. It 

represents the average function for both the hexagonal and cubic modifications} 

their difference being small . Equation (108) has been calculated in this work. 

The numerical values of thermochemical data used are given in Table 1. 
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TABLE 1 w 
+=-

THERMOCHEMICAL DATA USED FOR CALCULATION OF EQUATION (108) 

SUBSTANCE 

Jrorm 

Graphite 

Silicon, solid 

Silicon, liquid 

SiC, solid, hex.(?) 

Formula 
Weight 

12.010 

28.06 

not 
given 

40.07 

,--- ---

I 
~ I 

8298.16 I 
cal I Refer­

fwt deg I ence ! 
I I 
1 I 

1. 3609 115 
I 

4.47 115 
I • . • . . . i 
f 

! 
115 
I 

I 3.935 

Si(·solid, 1 atm, Tf ) + ~Hf-fT = Si{liquid, 1 atm, Tf ) 

a b 

4.10 1.02 

5·79 0.56 

6.12 o 

8.93 3·00 

-3 5 -2 Cp = a + b . 10 T + c . 10 T 

c 

-2.10 

-1.09 

o 

-3·07 

cal 
fwt deg 

Range of Validity 
OK 

298 - 2300 

298 - 1200 

<1825 

298 - 1700 

Deviation 
:I:. percent 

2·5 

2 

0.4 : 

3 

Tf = 1685 ± 2
0
K (ref. 17) ~Hf~ = 12095± :00 cal (ref . 17). 

Refer­
ence 

16 

16 

17 

16 

C(graphite, 1 atm, 29b.16°K) + Si(solid, l atm, 298. 16°K) + ~2;8.16 = SiC(solid, hex.(?), 1 atm, 298.16°K) ~H2;8.16 

= -26700 ± 2100 cal (ref. 14). 

15. F. D. Rossini et al., Selected Values of Chemical Thermo amic Properties (Circular of the National Bureau of 
Standards 500, Ser. I ~ashington, D. C., 1952 ] . 

16. K. K. Kelley, Contributions to the Data on Theoretical Metallurgy (U. S. Department of the Interior, Bureau of 
Mines, Bulletin 476 [Washington, D. C., 1949J ). 

17. M. 01ette, Compt. rend. 244,1033-(1957). 
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Equation (107) has been calculated by Humphrey and his co-workers. It 

represents the average function for both the hexagonal and cubic modifications) 

their difference being small . Equation (108) has been calculated in this work. 

The numerical values of thermochemical data used are given in Table 1. 



SUBSTANCE 

]form Formula 
Weight 

Graphite 12.010 

Silicon, solid 28.06 

Silicon, liquid not 
given 

SiC, solid, hex.(?) 40.07 

APPENDIX 2 

TABLE 1 

THERMOCHEMICAL DATA USED FUR CALCULATION OF EQUATION (108) 

t , 
I 

~ I 

S298.16 I Cp 
-3 5 -2 = a + b . 10 T + c . 10 T 

I 

cal I Refer- I cal 
fwt deg I ence I fwt deg 

I r------~ Range of Validity I I abc oK 

1.3609 I 15 I 4.10 1.02 : -2.10 298 - 2300 
I 

I 

I 

4.47 115 5·79 0·56 : -1.09 298 1200 

I 6.12 0 0 <1825 ...... i " 

I 

! 
3·935 ! 15 

I 8.93 3·00 : -3·07 298 - 1700 
I 

~~ ! 

Deviation 
± percent 

2.') 

2 

0.4 

3 

LA) 

+=-

Si(·solid, 1 atm, Tf ) + D..Hf-€r = Si!liquid, 1 atm, Tf ) 
o ~ ' 

Tf = 1685 ± 2 K (ref. 17) ~Hf = 12095 ± 100 cal (ref. 17). 

Refer-
ence 

16 

16 

17 

16 

C(graphite, 1 atm, 29b.16°K) + Si(solid, l atm, 298.16°K) + ~2;8.16 = SiC(solid, hex.{?), 1 atm, 298.16°K) ~H2;8 .16 

= -26700 ± 2100 cal (ref. 14). 

15. F. D. Rossin~ et al., Selected Values of Chemical Thermodynamic Properties (Circular" of the National Bureau of 
Standards 500, Ser. I ~ashington, D. C., 1952 J). 

16. K. K. Kelley, Contributions to the Data on Theoretical Metallurgy (U. S. Department of the Interior, Bureau of 
Mines, Bulletin 476 ~ashington, D. C., 1949J ). 

17. M. Olette, Compt. rend. 244,1033 (1957). 
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standard free-energy increment for the change 

C(graphite) + Si(liquid) = SiC(solid) . 

A study is made of the equilibrium : vapor and so­
lution of ca~bon in liquid silicon. 
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SUPPLEMENT 

To 

THE GASEOUS EQUILIBRIA IN THE ~~ON-SILICON BINARY SYSTEM 

By 

J. SMILTENS 

APPENDIX 2 

Let us denote by primes all quantities measured at the level bed 

(Fig. 1) and by double primes those measured at efg: 

'!:::,a-& 
J cond 

P' = oo,i A,j k 
ij ij = ooi Aj e RT k 

o 0 ij , 

and, at temperatures somewhat above the melting point of silicon, 

P' , 
ij 

i&~ 
eond 

saie RT Ajk . . 
o 0 lJ 

On dividing (Sl) by (S2), we obtain: 

(
. .) /\~-€r 
J- l ~cond 

RT 

Thus the ~G~ d can also be determined from the pressure ratios. 
con 

(Sl) 

(S2) 

(S3) 




